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A cylinder Med with a viscous, incompressible fluid is in an initial state of rigid-body 
rotation about its axis of symmetry. If the container is brought, to rest impulsively, 
the resulting unsteady spin-down flow may be subject to sidewall instabilities due to 
an imbalance between centrifugal and pressure gradient forces. These instabilities 
are examined numerically using a finite-difference simulation to integrate the axisym- 
metric Navier-Stokes equations for a variety of aspect ratios and Reynolds numbers. 
The Taylor-Gortler vortex-wavelength spectrum, the torque and the angular momen- 
tum histories are calculated. Criteria for the onset time for instability and the spin- 
down time ale given. The effects of the enhanced mixing due to instability on the 
spin-down characteristics and torque are discussed. The results are compared with 
experiment. 

1. Introduction 
Consider an infinitely long circular cylinder of radius a filled with an incompressible 

fluid of kinematic viscosity v.  The system rotates as a solid body with rotation rate SZ 
about its axis of symmetry. At time t' = 0 the angular velocity of the cylinder is 
decreased impulsively to the value R -An. Due to the action of viscosity, an unsteady, 
pure-swirl flow is set up in which the only non-zero velocity component V is in the 
azimuthal direction and depends only on t' and the radial co-ordinate r'. The function 
V is the solution of a diffusion equation having diffusivity v. 

The shape of the instantaneous velocity profile of V, shown in figure 1, suggests on 
the basis of the Rayleigh criterion (Rayleigh 1916) that the swirl flow might be 
centrifugally unstable for early t' near r' = a. This criterion, however, is at most 
suggestive since it applies only to steady swirl flows of inviscid fluids. Here, the swirl 
is unsteady and viscously controlled. It would only be through experiment or direct 
calculation that instability could be determined. 

Now consider the above situation for the completely enclosed geometry of a cylinder 
of length 2h. Again, a t  t' = 0, the container has its angular velocity decreased from 
SZ to SZ - ASZ. Again through viscous action, the fluid responds to the speed change by a 
process called spin-down. Because of the presence of the container end walls, there 
can no longer be a pure-swirl flow. The resulting flow will be unsteady and 
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FIGURE 1. Azimuthal velocity profiles for impulsive spin decay within an infinite cylinder. 

three-dimensional (though possibly axisymmetric). This flow is well understood in 
the limit AQ/Q -+ 0 as discussed by Greenspan & Howard (1963) for the case of 
R = SZa2/v 1. Here, for h/u not too large, the spin-down flow is dominated by 
Ekman ‘blowing ’ into the interior by the Ekman boundary layers on the end walls. 
, For the general case of AQ/Q not small, there is no analysis available since the spin- 
‘down flow is then strongly nonlinear. 

The spin-down flow discussed above is axisymmetric and unsteady. For early times, 
however, the flow near the sidewalls should resemble the pure swirl discussed above 
for the case of an infinite cylinder. If such a flow is locally centrifugally unstable, then 
the whole manner of spin-down can be modified. To be sure, the Rayleigh criterion is 
an even more uncertain measure of instability here since, in addition to the basic state 
(spin-down) being unsteady and strongly influenced by viscosity, it is no longer a pure 
swirl flow. All the velocity components are necessarily non-zero. However, for the 
present case of finite cylinders we have direct evidence that spin-down can be centri- 
fugally unstable and lead to the formation of axisymmetric vortices of Taylor-Gortler 
type. 

Euteneuer (1969, 1970, 1972) used flow visualization to study the evolution of the 
wavelengths of such vortices during impulsive spin-down to rest for a variety of 
Reynolds numbers. The vortices constantly re-adjust to the increasing thickness of 
the side-wall layer. Euteneur plotted vortex wavelength A/u versus Rayleigh-layer 
thickness 4(vt‘/u2)) and fit the data for each Reynolds number with two straight line 
segments. The intersection of these two segments he called the ‘Knickstelle’, or 
‘knee point’ and conjectured that its existence might be due to  the appearance of 
Tollmien-Schlichting waves at the side wall. Michaelidis (1977) measured torque 
histories during impulsive spin-down to rest and correlated his results with those of 
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Euteneur. Tillmann (1967) looked at  the onset of instability and transition to turbu- 
lence for a related problem employing two long concentric cylinders. At time zero the 
outer cylinder was impulsively stopped while the inner one continued to rotate with 
the initial angular velocity. Weidman (1976b) measured velocity profiles for non- 
impulsive spin-down using a laser-doppler velocimeter. Innes (1 973) measured trans- 
ient Ekman layer behaviour during impulsive spin-up and spin-down by monitoring 
thermistor beads a t  various radial positions on the cylinder end walls. 

Theoretical and numerical work on spin-down has been limited. Euteneur, H e p a t z  
k Siedenkersting (1968) computed azimuthal velocity profiles for spin-down using a 
modification of Wedemeyer’s (1964) approach for spin-up and used these to estimate 
the effects of the end walls on the onset of the instability. Weidman ( 1 9 7 6 ~ )  used a 
similar model for his computations for non-impulsive spin-down. Briley & Walls 
(197 1) developed a finite-difference code to integrate the Navier-Stokes equations for 
spin-up and spin-down. In  the latter case they present some streamline patterns for 
the vortices resulting from the centrifugal instability. 

The initial motivation for this study came from observations on the dynamics of 
liquid-filled projectiles. The liquid payload of such a projectile is initially spun up 
in a nonlinear fashion as described by Wedemeyer (1964). At some point in the trajec- 
tory the payload reaches a state of near rigid-body rotation. However, the exterior of 
the projectile is acted upon by an aerodynamic roll-damping moment, so that subse- 
quent to this apin-up time the liquid payload begins to spin down. If this spin-down 
is of sufficient magnitude to trigger instabilities in the sidewall boundary layer, then 
the modified torque on the projectile casing might lead to a gyroscopic and dynamic 
instability. In  addition, instances of such unsteady swirl occur frequently in flows 
within turbomachines. 

The object of the present work is the quantitative study of the instabilities during 
spin-down in finite circular cylinders. In  particular, we shall concentrate on spin- 
down to rest. It is in this case that instabilities should be most prominent since here 
there is the greatest instantaneous, adverse distribution of angular momentum in the 
basic state. There are three features of the problem that are particularly noteworthy. 
(i) Spin-down to rest is a strongly nonlinear process. In  the notation of our earlier 
discussion, AQ = Q, so that no analytic expression is available for the basic state 
spin-down flow. (ii) The problem of instability of spin-down involves the examination 
of disturbances upon a three-dimensional, unsteady, viscous flow. This is a formidable 
task. (iii) More importantly, the problem itself is a non-standard stability problem in 
the following sense. Consider the sketch shown in figure 2. Here we graph from a 
‘thought’ experiment the r.m.s. value of the disturbance (i.e. departure of the velocity 
from the spin-down basic state) velocity versus time. At t’ = 0, the flow begins to 
spin down. The sidewall layer begins to thicken and at the onset time to disturbances 
grow, perhaps to large amplitude. This large amplitude state contains the Taylor- 
Gortler vortices near the sidewalls, which enhance the mixing in the flow and perhaps 
greatly modify the rate of spin-down and the torque applied by the fluid to the con- 
tainer. These vortices then begin to fade away and after the spin-down time tsd the 
fluid is again sensibly in solid body rotation. Unlike the standard instability which is a 
permanent state, the initial and final states (solid-body rotation) of our system are 
absolutely stable and hence the finite-amplitude instability is only a transient. In  this 
sense spin-down instabilities are outside the realm of bifurcation theory (but see 
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FIGURE 2. Hypothetical r.m.8. disturbance velocity versw, time for spin-down. 

Davis 1971). It is, though, possible to use energy stability theory to  obtain lower 
bounds on to and upper bounds on tsd as Neitzel & Davis (1980) have for the case of 
pure swirl. 

Since the basic state is strongly nonlinear and since we wish to describe a possibly 
large amplitude transient instability, we decided to use a direct numerical simulation 
of the flow field. We concentrate on the side-wall instabilities by examining only 
axisymmetric disturbances consistent with the common experimental observation 
(e.g. see Weidman 1976b) that such disturbances are the first observed. (Such a 
restriction, however, excludes any Ekman layer instabilities that might be present.) 

We had available for use the finite-difference code of Kitchens (1980) that had been 
used successfully to simulate certain spin-up states. By appropriate modification 
axisymmetric spin-down instabilities could be examined. We aim at obtaining quanti- 
tative information on the flow fields, the modification by the instability of the rate of 
spin-down, and the torque exerted by the fluid on the container. It is the identification 
of the relevant time scales and the analysis of the mixing due t,o instability that is the 
main result of the present work. 

2. Formulation 
Consider a right circular cylinder of radius a and height 2h that is filled with an 

incompressible fluid of kinematic viscosity v. For times t' < 0, the system rotates 
about its axis of symmetry with angular speed SZ and a t  t' = 0 the container is 
impulsively stopped. 

The governing equations for the ensuing axisymmetric flow can be written in 
dimensionless form as follows: 

(2.la) 

( 2 . l b )  

(2 . lc)  
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z l  7 Midplane 

End wall 
FIGURE 3. Typical computational grid (shown & density) used for spin-down computations. 

where 

( 2 . 1 4  

The velocity components are (u, v, w ) in the directions given by the cylindrical co- 
ordinates (r, 8, 2 ) .  Here the circulation is proportional to r, 

= rv, ( 2 . l e )  

the stream function II. in the r, x plane is given by 

and 5, the 8-component of vorticity, is given by 

5 s  u,-w,. (2.19) 

speed -+ Qu; length -> a; time -+ Q-l. ( 2 . 2 )  

The variables have been made dimensionless using the following scales: 
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The R,eynolds number R is 

and the aspect ratio A is 
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R = Oa2/v, 

A = h/a. 

We further assume that the flow is symmetric about the midplane located a t  z = A. 
This allows us to reduce the size of the computational plane to half of what it would be 
otherwise, but restricts the number of disturbance vortices predicted to an even 
number. A sketch of the computational plane is given in figure 3. 

Under the assumptions of axial and midplane symmetries, the boundary conditions 
for system (2.1) are as follows: 

a t  r = O ,  @=r=C=O; (2.5a) 

a t  r = 1, @ =  0, r =  0, C =  $w; (2 .5b)  

( 2 . 5 ~ )  

a t  z = A ,  @=rl=[=O. (2.5d) 

1 
r 

a t  z = O ,  @=O, r=O, C=-$zs; 

The initial condition is a state of rigid-body rotation. Therefore, we have 

for t c 0, @ = 0, P = r ,  C =  0. (2.6) 

In order to resolve the side-wall boundary layer of the flow, a grid-stretching trans- 
formation is employed in the radial direction to place more grid points near the side 
wall than in the interior. The transformation is of the form 

where 
b = (I-q)-*, q < I ,  

( 2 . 7 ~ )  

(2.7b) 

and q is the user-selected constant which defines the amount of stretching. A similar 
stretching could be used in the z direction but technical considerations made this 
inconvenient. This is discussed more fully later. 

Equations (2.1) and boundary and initial conditions (2.5) and (2.6) are expressed in 
terms of these new variables and the difference equations are then constructed from 
these using second-order-accurate expressions. For details the reader is referred to 
Neitzel(l979). 

The @ equation is solved by the Gauss-Seidel method of successive substitution, 
and the I? and 5 equations are solved by the predictor-corrector multiple-iteration 
(PCMI) technique. Initial guesses for $, 5, and r at the beginning of a new time step 
are extrapolated from thevalues at the three previous time steps, when these are avail- 
able. Using these guesses, $zz and $m are computed along z = 0 and P = 1, respectively, 
to provide boundary data for C. One iteration of the PCMI technique is then performed. 
This begins at  one row below the midplane ( z  = A), and solves the C and I' equations 
for a single row implicitly. This is done for each row of points between the midplane 
and the end wall (z  = 0). When this iteration has been completed, the $ equation is 
solved iteratively to within some given tolerance, new boundary data are computed 
for 6, and another iteration of the PCMI technique is performed. This process is 
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repeated until the values of 5 and I? for a given iteration me within some given toler- 
ance of their values for the previous iteration at every grid point. The user specifies 8 

maximum number of iterations to be performed for 11- and for 5 and I?. If the program 
performs this many iterations without converging, a warning message is printed and 
the computation proceeds using the values from the final iteration. It has been deter- 
mined from numerous spin-up calculations that an occasional failure to converge 
does not qualitatively change the results, The program converges most slowly for 
gin the vicinity of the corner where the end wall and side wall meet. For the computa- 
tions performed here, ten iterations were allowed for the 11- equation, and twenty-five 
iterations for the I' and 6 equations. 

There were no external disturbances imposed to trigger instability. The round-off 
and truncation errors were sufficient to give rise to Taylor-Gortler vortices, these 
errors presumably constituting small disturbances. 

Briley & Walls (1971) treated similarly the problems of spin-up and spin-down, but 
employed the alternating-direction implicit (ADI) scheme and did not make use of 
either midplane symmetry or grid-stretching transformations. The PCMI procedure 
represents a compromise between explicit and fully implicit methods and is, in general, 
less time consuming than the latter. The use of equally spaced grid points imposes (for 
a given number of points) a restriction on the maximum Reynolds number for accurate 
computation, since the boundary-layer nature of the flow must be adequately resolved 
and these boundary layers decrease in thickness with increasing Reynolds number. 
For the case of impulsive spin-up from rest, Kitchens (1980) has been able to compute 
accurately the flow within a cylinder of aspect ratio unity for values of R as high as 
50 000. For a discussion of accuracy and stability of the method the reader is referred 
to Kitchens (1980). 

3. Flow measures 
Given a computation of a spin-down flow, one can judge to some extent the effects 

of instability, if any, by examining streamline contours. However, in order to gain a 
quantitative picture of the instabilities, other quantities must be defined and 
examined. 

(a) Torque. The torque exerted by the fluid on the container is an experimentally 
measurable quantity. In fact it is from the torque data that many workers on Taylor 
vortices between rotating cylinders determine the onset of instability of Couette flow. 
Furthermore, the torque is a quantity of direct relevance to the dynamic stability 
behaviour of a liquid-filled projectile. The torque on the cylinder for the case of impulsive 
spin-down to rest has been measured for various Reynolds numbers by Michaelidis 
(1977). Comparison of the computational results with his data will be given later. 

The total torque T on the cylinder may be separated into end-wall and side-wall 
components. This is a useful decomposition since the container aspect ratio is a 
parameter which influences the rate of spin-down, and the relative contributions of 
each component will vary with the aspect ratio. Also of interest is the way each of 
these components will be affected by the onset of instability. An increase in side-wall 
torque is expected following the appearance of Taylor vortices, but it is also possible 
that end-wall contributions may change, especially if a vortex forms near the corner. 

The torque contributions are obtained by integrating the product of radius and 
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azimuthal stress component over the appropriate surfaces. The side-wall torque is 
given by 

and the end-wall component is given by 

where the s and e subscripts designate side wall and end wall, respectively, stress has 
been scaled with pQ2a2 and symmetry assumptions have been employed. Equations 
(3.1) and (3.2) are expressed in terms of second-order-accurate difference expressions 
in terms of I’, B ,  and z and the integrals evaluated by the trapezoidal rule. They are 
computed for each time step so that a time history of torque can be calculated. 

( b )  Angular-momentum ratio. The volume-integrated angular momentum ratio of 
the fluid within the cylinder is given by 

scaled in units of the initial value 7rpQha4. L is evaluated in terms of I?, B and z using 
trapezoidal rule integration and obtained as a function of time. 

The ratio L is of interest in determining the spin-down time, which we define to be 
that time t,, at which the angular momentum L is e-l of its initial value. The onset of 
Taylor-Gortler vortices should produce a noticeable effect on the angular momentum 
decay, since the vortices are effective in transporting higher angular momentum 
fluid from the interior to the region near the wall and because the velocity gradients 
within these vortices dissipate energy. 

( c )  Rayleigh discriminant and Rayleigh length. The Rayleigh criterion states that a 
necessary and sufficient condition for a steady, inviscid, pure swirl $ow V ( r )  to be 
linearly stable is that the inequality 

be satisfied for all r .  The quantity @(r)  is called the Rayleigh discriminant. Since the 
Rayleigh criterion is based on the assumption that the fluid is inviscid, and since 
viscosity is presumably a stabilizing influence for such swirl flows, a velocity profile 
which is predicted to be unstable on the basis of the Rayleigh criterion may indeed be 
stable in practice due to the effect of viscosity. 

For spin-down within a finite cylinder, the flow is not only unsteady and viscous, 
but three-dimensional as well. From preliminary computations, i t  appears that the 
instability begins to form at the cylinder midplane and eventually propagates out- 
ward toward the end walls. On the basis of these computations, it was decided to 
calculate the Rayleigh discriminant as a function of radius and time a t  the container 
midplane. In  addition, we were interested in what portion of the flow field at  the 
midplane is ‘potentially unstable’ according to the Rayleigh criterion. Figure 4 is 
a sample plot of @ versus r for a particular case considered. @ is positive for all r up to 
about r = 0-9, a t  which point it goes negative. We define the Rayleigh length, L,, to be 
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r 
FIGURE 4. Rayleigh discriminant versw radius for impulsive spin-down to rest with 

R = 2000, A = 1.0, t b l  = 0,141. 

the distance between the point a t  which Q, fist crosses zero and the container side 
wall. For the above example, L, z 0.1. This quantityis computed as a functionoftime. 

( d )  Spectral analysis and cmpututional limitations. As mentioned in the introduction, 
the experiments of Euteneur (1969, 1970, 1972) were concerned primarily with meas- 
urement of the time history of vortex wavelengths for the case of impulsive spin-down 
to rest. The vortices were made visible using aluminium flakes and axial wavelengths 
were determined from photographs. An average wavelength was calculated by divid- 
ing the axial length covered by the instability by the number of vortex pairs observed. 
Calculations of this type are possible in our computation from a visual inspection of 
the streamlines. 

Inspection of streamline plots from preliminary computations indicates that there 
is no unique vortex wavelength, but rather a range of wavelengths a t  any given time. 
Because of this fact, it was decided that only a spectral analysis would be able to give 
quantitative information on the wavelength distribution of the vortex structure. 

The discrete, one-dimensional Fourier transform Y ( k )  of stream function $(j) is 
defined by 

n- 1 k = 0, 1, ..., - 
2 ’  (3.5) 

where n is the number of data points and i = J -  1. The corresponding amplitude 
spectrum is defined by 

n - 1  
A(k)  = [Y(k)F(k)]t, k = O,1, ..., - (3.6) 2 ’  

where the overbar denotes complex conjugate. This amplitude spectrum for the stream 
function is computed at user-chosen radial positions by first calculating the values of 
$between the cylinder midplane and the top (from mirror symmetry considerations), 
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using a fast Fourier transform to compute Y ( k ) ,  and then calculating A(k)  from (3.6). 
These spectra may be plotted in histogram form a t  any radial position for any time. 

It must be remarked that the decision to perform an axial spectral analysis using 
existing software (and equation (3.5)) necessitates either choosing a grid which is 
equally spaced in the axial direction, or interpolating to obtain equally spaced axial 
data. The latter choice yields spectra which are coloured by the interpolation scheme, 
while the former rules out the possibility of employing axial grid transformations to 
place more points in the Ekman layer on the cylinder end wall. The discussion in sub- 
section (c) pointed out that the most critical location was the cylinder midplane, and 
that, after the initial formation at that location, the instability was propagated out- 
ward toward the end walls. This implies that good resolution is needed near the side 
wall along the entire length of the cylinder. This fact, when coupled with the need for 
equally spaced data for the spectral analysis, influenced the decision to use equally 
spaced axial grid points for all computations. Grid-stretching transformations were 
employedin the radial direction only. 

A typical grid (shown 1 density) which was used for the case of R = 2000, A = 2.0 is 
shown in figure 3. The radial stretching here corresponds to a value of q = 0.1 in 
equation (2.7). 

This use of equally spaced axial grid points becomes a problem when trying to 
accurately compute high Reynolds number/high aspect ratio cases. Since the Ekman 
layer has thickness O((AZR)-*), we need to decrease the axial spacing when going to  
high R in order to maintain the needed resolution in this layer. Since computation 
time and storage are both expensive, we eventually reach a practical limit. For the 
computations done here, this practical limit on storage corresponds roughly to 
41 x 81 grid, determined by memory restrictions for interactive processing. 

( e )  Time scales. The properties of spin-down and spin-down instabilities can be 
interpreted in terms of various time scales. We shall define these here in terms of the 
dimensional time t' and relate one to another. 

The radial-diffusion time scale is given by 

t ,  = vt'/a2. (3.7) 

The time scale associate&with the impulsively generated side-wall (Rayleigh) boundary 

which is the form used by Euteneuer to correlate his data. 

and spin-down by Greenspan & Howard (1963). This is given by 
Finally, there is the Ekman time scale associated with small Rossby number spin-up 

t ,  = Rt'A-l R-4. (3.9) 

These time scales can be related to each other as follows: 

and 
(3.1Oa) 

(3.10b) 
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FIGURE 5. Instantaneous streamlines for case 5 ( R  = 4000, A = 1.0) at t b l  = 0.100. 

4. Results and conclusions 
The computations described in the previous sections have been performed for a 

variety of spin-down cases using a Control Data Corporation Cyber 70/76 with a 
Cyber 170/173 front end. Output from the Cyber 70/76 was stored on a disc drive 
unit attached to the Cyber 170/173 and subsequently analysed in an interactive 
graphics mode using a Tektronix 4014 terminal with PLOT 10 software. 

Computations were performed for various Reynolds numbers and aspect ratios. 
The bulk of the computations were for the case of impulsive spin-down to rest since 
this case is most prone to instability and the experimental data of Euteneuer (1972) 
are available for comparison. A few non-impulsive cases were examined (Neitzel 
1979) but these will not be discussed here. 

Before we begin our discussion, let us reiterate the assumptions inherent in the 
numerical experiment. All flow quantities are assumed to be axisymmetric as well as 
symmetric about the midplane. Thus non-axisymmetric centrifugal instabilities are 
forbidden. Furthermore, an Ekman layer itself might be prone to instabilities but, 
since these are also non-axisymmetric, they are excluded as well. Only even numbers 
of axisymmetric vortices are examined. No external disturbances ale imposed upon 
the flow in an attempt to induce certain modes of instability so that all instabilities 
grow from small disturbances to the flow due to round-off and truncation errors alone. 

Let us consider a single case first, R = 4000, A = 1. This is later called case 5. 
Figures 5-9 show the instantaneous streamlines for times t,, = 0.100, 0.187, 0.212, 
0.264 and 0.346. The boundaries of these streamline plots correspond to the boundaries 
of the computational plane given in figure 3 in which the bottom of each plot represents 
the end wall, the top is the midplane, and the left- and right-hand sides are the axis of 
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FIQURE 6. Instantaneous streamlines for case 5 ( R  = 4000, A = 1.0) at t b z  = 0.187. 

FIGURE 7. Instantaneous streamlines for case 5 ( R  = 4000, A = 1.0) at t , ,  = 0.212. 

symmetry and side wall, respectively. The entire flow field is represented by each figure 
plus its reflection across the midplane. For the infinite cylinder case, there is pure 
diffusion so that the ‘spin-down’ time should be t ,  = O(1) and hence t,, = O(1). 
Figure 5 shows the streamline pattern shortly after the cylinder has been stopped. The 
cellular pattern due to the Ekman layers is as yet undisturbed. In figure 6 we see the 
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FIGURE 8. Instantaneous streamlines for caae 6 ( R  = 4000, A = 1.0) at t b l  I: 0.264. 

1 
FIGURE 9. InstantaneouR streamlines for case 6 ( R  = 4000, A = 1.0) at t b l  = 0.346. 
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FIGURE 10. Torque history for case 5 (R = 4000, A = 1.0). -, T; 

0 0.1 0.2 0.3 t b f  

0 0.1 0.2 0.3 0.4 0.5 tE 

-._.-. , T,; ----, T a. 

Case 
no. A 

1 0.5 
2 1.0 
3 1.0 
4 1.0 
5 1.0 
6 2.0 
7 2.0 
8 2.0 
9 3.0 

R 

2000 
1000 
2000 
3000 
4000 
1000 
2000 
3000 
1000 

t b l  

tbZ 

0.33 - 
Stable - 
0.30 - 
0.22 - 
0.17 - 
0.52 0.36 
0.28 0.19 
0.22 0.15 
0.55 - 

t E  

0.64 
Stable 
0-25 
0- 1.6 
0.1 1 
0-28 
0.11 
0-083 
0.20 

t 0  

t e a  - 
0.35 0.67 
0.47 0.44 
0.40 0.45 
0.36 0.45 
0-34 0.47 
0-57 0.32 
0.46 0-29 
0-42 0.30 
0.59 0.23 

t b l  t E  

A t E  

due to 
instab. 

0 
N.A. 

17 
51 
60 
0 

39 
62 
0 

(%I 

AL 
at 

spin-down 
time 

0 

10 
17 
20 
0 

14 
20 

0 

(%) 

N.A. 

LR at 
onset 

0.12 
N.A. 

0-15 
0.09 
0.10 
0.19 
0.15 
0.12 
0.20 

TABLE 1. Results for impulsive spin-down to rest. t , ,  (expt.) is taken from Euteneuer (1972). 

flow shortly after onset of centrifugal instability (which begins a t  the midplane). We 
also see modifications to the flow in the vicinity of the corner where side wall and end 
wall meet. Figure 7 shows a well-developed pattern of side-wall vortices of various 
sizes while figure 8 shows how this pattern has been evolved in time while the side-wall 
layer has thickened. In figure 9 the flow has spun down considerably and exhibits a 
much weaker and less organized vortex structure than seen in the previous figures. 
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0.25 
0 0-1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 t d x  lo2 

r , ' " * ,  . . I f 

0 0.1 0.2 0.3 tM 
l . . ~ . ~ " . ~ ~ ' . . . I ' ' ' . l ' ~ ' . ~  

FIQURE 11. Angular momentum history for case 6 (R = 4000, A = 1.0). 
-, actual; extrapolated 'stable' history. 

0 0.1 0.2 0.3 0.4 0.5 t E  

The torque history for case 5 is plotted in figure 10. Shown are the total torque on 
the cylinder and the individual side-wall and end-wall components. The effect of the 
instability is apparent; the side-wall component of torque begins to increase in the 
vicinity of t,, = 0.17, indicating the onset of instability. This is our definition of the 
onset time to and is presented later in table 1 for all cases considered. Notice also the 
dip in the end-wall torque component that accompanies the rise in T,. This is probably 
due to the flow modifications which are taking place near the corner (figure 6), which 
is the most sensitive part of the end wall with respect to torque. This dip in the end-wall 
torque near the onset time was present in all cases in which instabilities were seen. 

The history of the angular momentum ratio L is shown for case 5 in figure 11. The 
solid curve represents the calculated L(t), which is a result of the spin-down flow plus 
the effects of the added mixing due to instability. In  order to assess the effect of the 
latter only, one would have to subtract L(t) for the spin-down flow alone. This would 
require a 'noiseless ' numerical computation which would correspond to a physical 
state having no disturbances. Since we do not know how to perform such a calculation, 
we must be content with en extrapolation of L(t) from the calculated curve from times 
below the onset time, as determined from g(t), to later times. Thus, the dashed curve 
in figure 11 represents an estimate of the form of L(t) had no disturbances been present 
in the system. 

We define the spin-down time tea as the instant at which L(t) = e-1. For this case it 
occurs at t, = 0.34. Therefore, the streamlines of figure 9 correspond to those at 
roughly the time at which the flow has been defined to be spun down. Notice at the 
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FIGTJFLE 12. Amplitude spectra for cme 6 (R = 4000, A = 1.0) for tar = 0.212. 
(a) r = 0.990, ( b )  v = 0.964, (c) T = Ok901. 

spin-down time that L is about 20 % smaller than the extrapolated, instability-free L 
would have been. This is a result of the enhanced mixing due to the presence of the 
Taylor-Gortler vortices. If we take the extrapolated curve seriously up to the point 
where it reaches the value e-l, then we see that the enhanced mixing decreases the 
spin-down time by a factor, shown in table 1 as At,, of about 60 yo. 

Figures 12 and 13 are plots of amplitude spectra A(k,  t )  versus axial wavenumber k 
for two different times. Each spectrum was computed for three different radial 
positions near the side wall to see whether radial position strongly influences the 
results. The spectra in figure 12 show peaks a t  all three radial 1ocations.at values of 
k = 7 and k = 9 with the former wavenumber dominant. In figure 13, these com- 
ponents have been reduced and the dominant wavenumber isnow k: = 6. Clearly, 
the spectra a t  all radii give similar conclusions. Figures 12 and 13 correspond in time 
to the streamlines of figures 7 and 8 respectively and show the shift to lower wavenum- 
bers with time. This shift is more dramatically illustrated by examining the histories 
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FIGURE 13. Amplitude spectra for case 6 (R = 4000, A = 1-0) for t,, = 0.284. 
(a) T = 0.964, (b )  T = 0.901, (c) T = 0.867. 

of neighbouring wavenumbers. This is shown in figure 14, where amplitude histories 
of the k = 5 , 6 ,  and 7 components of the spectrum a t  r = 0-990 are plotted. The shift 
in dominant wavenumber from 7 to 6 and later to 5 is readily apparent. 

Figure 15 is a plot of Rayleigh length, L,, versus time for case 5. L, is positive for 
all time, indicating inviscid instability in a. quasi-steady sense. The behaviour typical 
of cases which experienced instability is that of oscillatory behaviour of L ,  followed 
by a large drop in the vicinity of the onset time. This is seen in figure 15 with the early 
oscillations being weak. The previously determined onset time is indicated. The 
roughness of the curve for late times is partially due to the fact that not every time step 
was stored on the disc during the Navier-Stokes computations. 

An additional remark must be made with respect to the use of the Rayleigh 
criterion. Equation (3.4) may be useful as an indicator of possible swirl flow instability 
when applied to  a pure basic state without disturbances. Since, in these computations, 
it  is impossible to separate the basic state from the disturbed state, we must disregard 
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FIGURE 15. Rayleigh length history for case 5 ( R  = 4000, A = 1.0). 
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the Rayleigh length computation for times after which we are certain that the onset 
of instability has occurred. 

We now turn to the results of the calculations shown in table 1. This is a summary 
of nine numerical experiments in the ranges 0.5 < A 6 3.0 and 1000 6 R 6 4000. 
We show the onset times (defined by the side-wall torque q), and the spin-down times 
(defined by the angular momentum L) in terms of tb, and t,; td is directly related to 
tbl through relation (3.10a). Further, we indicate L, at onset as well as AtE, the per- 
centage decrease in the spin-down time m a result of the Taylor-Gortler v o r t k ,  and AL, 
the percentage decrease in angular momentum at the spin-down time. 

Case 2, in which A = 1.0, R = 1000, showed no tendency toward instability. All 
other cmes led to well-developed Taylor-Gortler vortices as indicated. 

Onset times. The onset times decrease with increasing Reynolds number for fixed 
aspect ratio consistent with the results of Euteneuer (1972). This is seen by examining 
cases 3-5 or 6-8. 

The experimental values, which appear in table 1 for cases 6-8, were estimated from 
the wavelength versus time curves of Euteneuer (1972) by assuming that the earliest 
appearing point on each curve corresponds to the onset time. That the experimental 
values lie about 30 yo below those predicted numerically could be due to the experi- 
ment having larger disturbances than our numerical simulation, in which case an 
earlier instability might result. Furthermore, our simulation excludes non-axisym- 
metric (e.g. Ekman layer) instabilities that might trigger the experimentally observed 
flows. However, we know of no observations that support the existence of such 
effects. 

It appears, if one uses the boundary-layer time scale, that the onset time is relatively 
insensitive to the aspect ratio A for a given R. This is seen by examining cases 1,3 and 
7, cases 4 and 8 or cases 6 and 9. We thus see that the side-wall boundary layer is 
centrifugally unstable, the instability depends on the local structure of the boundary 
layer and very weakly on the overall spin-down flow. This is in part due to the onset of 
instability occurring before the spin-down mechanism is effective. 

A technique which has been used to correlate experimentally determined onset 
times (Tillmann 1967, Maxworthy 1971; Weidman 19763) involves applying a 
Gortler criterion to instantaneous sidewall velocity profiles. This quasi-steady stability 
approach results in a constant value for a parameter Go, where 

Go = B(O/a)*, (4.1) 

and 8 is the momentum thickness of the side-wall layer. Tillmann (1967) defines 8 (in 
our nohtionl as 

The values of Go calculated for cases 1-9 using equations (4.1) and (4.2) range from 
11.2 to 16.3. Furthermore, our neat characterization of to depending principally on R 
and oiily weakly on A is submerged using the parameter 0,. Hence, there seems to be 
little advantage in using a Gortler criterion to correlate our numerical results. Likewise, 
such a correlation seems ineffective in understanding the three experimental points of 
Euteneuerlistedin table 1. It is probably the quasi-steady nature of the Gortler criterion 
that .makes it invalid quantitatively in the present spin-down cases. 

I2 FLY I02 
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FIGURE 16. Rayleigh length history for case 2 ( R  = 1000, A = 1.0). 

Spin-down times and spin-down augmentation. The spin-down times are relatively 
insensitive to Reynolds number changes for fixed aspect ratio when measured in 
terms of the Ekman time scale, while it increases with aspect ratio for a given Reynolds 
number. We thus see that the spin-down rate continues to be controlled by the Ekman 
blowing from the end-wall layers (as long as A is not too large) since the spin-down 
continues to be scaled with t,. However, there is substantial enhancement of spin- 
down due to the Taylor-Gortler vortices. This may be seen by examining the columns 
of table 1 labelled AtE and AL, which estimate the effect of the instability on the 
spin-down process. 

AtE is an estimate of the percentage decrease in spin-down time due to the presence 
of Taylor-Gortler vortices. It was computed by extrapolating the angular momentum 
trend prior to the onset time, determining the 'stable flow' spin-down time from this 
extrapolated curve, and then relating this to the calculated spin-down time. Cases 1, 
6 and 9 show a value of zero even though they experienced instability. An examination 
of onset and spin-down times for these cases reveals that this is due to the fact that 
onset occurred just slightly before the flow was defined to be spun down. Hence, the 
instability played little, if any, part in the spin-down process for these cases. For those 
cases (3-5, 7-8) where onset occurs significantly before the spin-down time, the 
enhanced mixing due to the vortices brings about significant reductions in the spin- 
down time. These vary from 17 yo for case 3 to  62 Yo for case 8. For a fixed aspect ratio 
these values of At, increase with Reynolds number due to the fact that the onset of 
instability occurs earlier in the overall process, thus giving the voltices a longer time 
to contribute. Obviously, since these values are computed from data extrapolated 
over sometimes large distances, they cannot be considered accurate in a quantitative 
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FIGURE 17. Comparison of case 7 (R = 2000, A = 2.0) results with Euteneuer (1972) data for 
disturbance wavelength. -, Euteneuer (1972); 0, present numerical experiment. 

sense. However, they are useful in qualitatively assessing the efficiency of the instabil- 
ity mechanism for various Reynolds number/aspect ratio combinations. 

The column labelled ‘AL at spin-down time’ was also computed using the extra- 
polated angular momentum history. AL is an estimate of the percentage decrease in 
angular momentum a t  spin-down due to the instability. AL ranges from 10% for 
case 3 to 20 yo for cases 5 and 8. The same trends discussed with respect to At, are found 
here. In  this case, however, one has more confidence in the quantitative accuracy of 
the results since the required extrapolation (only up to the actual spin-down time) is 
not as severe. 

Rayleigh lengths. The value of the Rayleigh length L, just prior to the dip character- 
istic of the onset of instability has values that fall in the range 0.09 < L ,  < 0.20. 
However, a value of L ,  in this region is not a sufficient condition for instability, as can 
be seen from figure 16 (case 2), where the value of L, rises to nearly 0.24, but no instabil- 
ity was seen. Thus, the Rayleigh criterion, when applied in this manner, seems to be 
a poor indicator of instability for this type of unsteady, viscous, three-dimensional 
flow. 

Comparison with experiment. The experiments of Euteneuer (1972) allow comparison 
with two of the cases considered in this study. Euteneuer’s primary concern was the 
evolution of vortex wavelength with time. He measured the average wavelength from 
photographs of the flow (vortices were made visible using aluminium flakes). As 
noted earlier, neither the computations nor the experiments yield unique vortex sizes 
at any time, but rather show a range of wavelengths. Euteneuer observed that the 
wavelength increased more or less linearly with the boundary-layer time scale, but 

12-2 
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FIGURE 18. Comparison of case 0 (R = 1000, A = 2.0) results with Euteneuer (1972) data for 
disturbance wavelength. -, Euteneuer (1972) ; 0 ; present numerical experiment. 

that after a certain ‘ knee-point ’ a change in slope was observed. Actually, the change 
in wavelength is not smooth, but occurs in a step-wise fashion as vortices coalesce to 
adjust to the changing side-wall boundary layer. This fact can be observed in figure 17, 
where Euteneuer’s actual data are represented by horizontal lines with vertical end 
bars. 

For the purpose of comparison with Euteneuer’s data, average wavelengths were 
computed ‘visually ’ from the contour plots of instantaneous streamlines. For cases 
6 and 7 this was done by counting the number of vortex pairs and dividing this number 
into the length of the cylinder covered by the instability. 

For case 6, the results are shown in figure 18. The quantity A/a is the vortex pair 
wavelength scaled on cylinder radius. The agreement for this case is only fair. This 
could be due to the fact that the instability is very weak. In  fact, this is the lowest 
Reynolds number (1000) for which Euteneuer (1972) has displayed any data. This 
may indicate that for lower Reynolds numbers Euteneuer did not observe any instab- 
ility at all, a result which would not be inconsistent with the fact that our instability 
for this case was extremely weak. 

For caae 7 (figure 17) the agreement is reasonably good and the sharp increase in 
Euteneuer’s data coincides roughly with a similar increase in the numerical experiment 
results. For large times, however, the results of the numerical computations must a t  
least be suspect because of the assumptions of axisymmetry and midplane sym- 
metry. Experimental evidence (Greenspan 1968, figure 6.3; Innes 1973) seems to 
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indicate that, while the initial vortices may indeed be axisymmetric, they do not 
remain so for long. 

Figure 19 gives a comparison between the torque computations for case 7 and the 
experimental torque measurements of Michaelidis (1977). The first break in Michael- 
idis’ data occurs a t  approximately the same location as Euteneuer’s Knickstelle. The 
results of the numerical experiment also show a wiggle a t  the same point. One point 
that makes comparison difficult is that the aspect ratio of the cylinder used by 
Michaelidis is not stated. No mention of it could be found in the 1977 paper, and his 
doctoral dissertation s tabs  only that cylinders in the range 3.5 < A 6 5.0 were used. 
Higher aspect ratios would tend to give higher values of T, for early time due to the 
increased size of the side wall. In  light of the violently unsteady nature of the flow 
during impulsive spin-down and the assumptions of axisymmetry and midplane 
symmetry made by the Navier-Stokes computation, the agreement with experiment 
for case 7 is felt to be very good. 

The results of figure 19 relate to Euteneuer’s conjecture that the Knickstelle 
results from a Tollmien-Schlichting (T-S) instability mechanism. If one believes that 
the wiggle in the torque curve from the numerical experiment corresponds to the 
Knickstelle in the data, then a T-S mechanism is excluded since the computations 
are for axisymmetric modes. On the other hand a photograph in Euteneuer (1972) 
shows vortices for a time after the Knickstelle that are seemingly turbulent. If this is 
the case, secondary (non-axisymmetric) instabilities must be present and these could 
well result from a T-S instability. 

A word should be mentioned about how the present work impinges on the 
original motivation of the work, viz. the possibility that spin-down instabilities 
may be important in the dynamic instability of liquid-filled shells. The best ‘fit’ 
for the angular velocity history for the spinning down shell is exponential in time, 
w ( t )  = SZ exp ( -a t ) ,  rather than impulsive. Selected calculations for this case were 
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performed by Neitzel(1979), where it was found that the coefficient a is so small that 
spin-down instabilities are in fact unlikely to be present even though the Reynolds 
numbers R based on Q can be as high as 10'. 
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